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Abstract. The Villain model and the triangular antiferromagnet are the two canonical fully
frustrated two-dimensional Ising systems. Exact results are presented for the entropy changes
that occur when bond and site defects are introduced into these systems. The results for single
defects are obtained first. Pairs of site defects are then discussed. The change in entropy is
evaluated to the leading term in an expansion in powers ofR−1 whereR is the separation of
the defects. The entropy shift is∼ R−2 in both models except for special values ofR in the
Villain model where it is∼ R−4.

1. Introduction

The purpose of this paper is to present some exact results for the entropy changes brought
about in two-dimensional (2D) fully frustrated Ising systems by the introduction of simple
defects. These results have a relevance to a particular line of research in spin glasses. To
put the current work into context, we begin with a very brief summary of the spin glass
investigations, although specifically spin glass issues are not the concern of this paper.

Spin glasses are characterized by frustration and randomness. There have been a number
of studies that have sought to introduce randomness into initially non-random frustrated
systems by means of defects. Triangular (2D) and fcc (3D) antiferromagnetic lattices are
popular systems to use. The starting models are fully frustrated with a highly degenerate
ground state and the replacement of magnetic sites with a non-magnetic species reduces
frustration but inserts randomness.

The presence of defects reduces the entropy of the fully frustrated system and early
Monte Carlo (MC) calculations [1] give some indication that even in the site-diluted
triangular antiferromagnet some type of long-range order was possible. The slowing down
associated with MC calculations in systems of this sort make it notoriously difficult to
draw firm conclusions about the low-temperature behaviour, however, and renormalization
group work [2] gave no indications of the freezing in of long-range order; this is consistent
with the assumed lower critical dimensionality of three for a spin glass. More recent MC
calculations [3] and transfer matrix methods [4] have attempted to monitor the entropy as
a function of defect concentration with conflicting results. This work was partly motivated
by the indications [5] of a zero field hole in the distribution of local fields,P(h), which is
often regarded as a signal for spin glass behaviour.

Clearly the behaviour of the entropy as a function of dilution is important for such
studies. Exact results are possible for 2D Ising models in the low-temperature limit. We
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consider the two canonical fully frustrated systems: the Villain model [6] for the square
lattice and the triangular antiferromagnet for which the first theoretical work was done by
Wannier [7]. Results are presented for both models for the change in entropy due to the
presence of a single defect (and as a corollary to terms linear inc for a low concentration,
c, of defects). To our knowledge no calculations for the Villain model have appeared
previously. There is a single calculation [4] for the triangular antiferromagnet in which
the entropy change is related toP(h = 0). In addition we obtain results for the entropy
changes that occur due to defect pairs and give the functional dependence on the separation
of defects in the pair.

2. Method

The method used in the calculation is based on the combinatorial expansion of the 2D
Ising model [8, 9]. This approach has been employed by a number of authors [10–14] to
obtain exact results for certain properties of large disordered lattices. The developments
described in [10] form the background to the procedure used in this paper; the key points
are summarized below.

It is well known [9, 10] that the partition function for 2D Ising systems in the absence
of a magnetic field can be expressed as

Z = 2N
[∏
〈ij〉

cosh(Jij /kT )

]
(detD)1/2 (1)

whereJij is the coupling between nearest-neighbour sitesi andj , andD is a matrix whose
elements depend on the lattice and are functions of{Jij } and temperatureT . D is usually
written in a skewed symmetric form, but multiplying all elements by i(

√−1) does not
change the value of the determinant and it does allow us to work with a Hermitian matrix
with real eigenvalues.

We showed earlier that this formalism provides a particularly elegant description of the
ground-state properties of frustrated systems. Again we can focus on the eigenvalues ofD.
We can divide the problem into two sets of decoupled eigenstates—those associated with
the frustrated plaquettes and the rest. This can be done for frustrated systems generally,
but it takes a particularly simple form for the±J model (for an arbitrary proportion,p, of
−J bonds). In this case (at temperatures near zero) all the frustration eigenvalues can be
written as

ε = ± 1
2X exp(−2rJ/kBT ) (2)

where r is an integer. The number of these eigenstates is precisely equal to the number
of frustrated plaquettes.X andr have the physical significance of determining the ‘wrong
bond’ energy,F , and the ground-state entropy,S,

F = 2J
+∑
d

rd (3)

S/kB =
+∑
d

lnXd (4)

where the sums are over the frustration states with positive eigenvalues. One can also
relate correlation functions to the spatial extent of these frustration states. The fact thatF

andS are related just to the frustration in the system is intuitively appealing. It should be
emphasized, however, that the proof [10] of the apparently simple result in equation (4),
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−1−1 −1−1 1−1 1−1 Figure 1. Section of zig-zag domino lattice. Light bonds are
positive and heavy ones are negative. Plaquette labelling is
shown.

while straightforward, is not trivial. The entropy in equation (4) can alternatively be
expressed in terms of the logarithm of a determinant as we shall see later. For the moment,
equation (4) conveniently emphasizes the decoupling of eigenstates associated with the
frustration.

The approach has already been used [10] to study the±J spin glass withp = 50%
and more recently this has been extended to cover the full range ofp. The purpose of this
paper is to use the formalism in the context of diluted fully frustrated systems. For such
systems we have the simplification that we can work just within the subset of frustration
states and furthermore all the states are of the typer = 1. The following section addresses
the Villain model and the subsequent one treats the triangular antiferromagnet.

3. Square lattice

3.1. Villain/zig-zag domino model

The Villain model [6] is a square lattice with every plaquette frustrated. An alternative
representation of the fully frustrated square lattice is the zig-zag domino model which is
related to the original Villain model by a gauge transformation and is entirely equivalent to it
with regards to its properties. In this paper we work with the zig-zag domino representation.
The positions of the regularly placed positive and negative bonds are shown in figure 1.

The matrixD for the square lattice is generally given as follows. Each site is decomposed
into four nodes which are connected by a 4× 4 block

U =


0 −i i i
i 0 −i i
−i −i 0 −i
−i −i i 0

 (5)

on the diagonal ofD. The node labelling (see also [10]) is displayed in appendix A. All
remaining elements ofD are given by

〈i; 1|D|i+ x̂; 2〉 = −iti,i+x̂ (6a)

〈i; 3|D|i+ ŷ; 4〉 = −iti,i+ŷ (6b)

wheretij tanh(Jij /kBT ) and x̂ and ŷ are unit vectors along the axes of the square lattice.
We may defineλ = 1

4[1−tanh(J/kBT )] and write exactly for the fully frustrated system

D(λ) = D(0)+ λD1 (7)
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whereD(0) is the zero temperature value ofD. The frustration eigenstates,|f 〉, are solutions
to D(0)|f 〉 = 0, so that

D|f 〉 = λD1|f 〉. (8)

Because there are two plaquettes in each cell of the regular lattice there are two types of
state|f 〉 which we denote by|α〉 (on the left of the negative bond) and|β〉 (on the right
of the negative bond). Expressions for these in the node basis are given in appendix A.
Plaquette labelling is shown in figure 1.

The next step is to form the matrixD1 in the basis of these frustrated eigenstates (one
for each frustrated plaquette). Becauseλ ≈ 1

2 exp(−2J/kBT ) at smallT , the eigenstates
of D1 provide the coefficientsX from which the entropy may be calculated. It should be
emphasized at this stage that the entropy depends on lnX. If any of theX’s are zero then
this simple theory is not valid (it is a flag that states withr > 1 are involved). In that case,
one would have to return to the theory in the full node basis which is given elsewhere [10].
For the fully frustrated systems, and for the simple defects we shall be considering, none
of theX’s are zero.

Using the plaquette labelling shown in figure 1, the matrix elements ofD1 are given by

〈αm,n|D1|βm′,n′ 〉 = i[−δ(m−m′)δ(n− n′)+ δ(m−m′ − 1)δ(n− n′ + 1)

+δ(m− n′ − 2)δ(n− n′)+ δ(m−m′ − 1)δ(n− n′ − 1)]. (9)

The primitive translation vectors are(2, 0) and (−1, 1) and the basic plaquette states are
labelled by the unit cell coordinates. Theα andβ plaquettes are at positions(−1

2, 0) and
( 1

2, 0) respectively in the unit cell. Making the definition|αk〉 = N−1/2∑
r exp(ik · r)|αr〉

wherer = (m, n) + (− 1
2, 0) (and similarly for|βk〉), whereN is the total number of unit

cells (frustrated plaquette pairs), we find that

〈αk|D1|βk′ 〉 = i2δ(k − k′)(−i sinkx + cosky). (10)

It follows that

X2
k = 4(sin2 kx + cos2 ky). (11)

Using equation (4), the entropy per site (the number of plaquette pairs is half the number
of sites) is given by

S/kB = 1

4

∫ π

0

dkx
π

∫ π

0

dky
π

ln[4(sin2 kx + cos2 ky)] (12)

which is the result found by André et al [15].
Although this paper is mainly concerned with site dilution, for completeness we will

consider a bond defect as well.

3.2. Bond defect

This defect consists of the removal of a single bond rendering unfrustrated regions originally
occupied by the associated frustrated plaquette pair. This is displayed in figure 2; the region
associated with|α00〉 and |β00〉 is now unfrustrated. We have the complication of changing
the size of the basis. This can easily be dealt with as follows. Apply a perturbation,V, to
the D1 of the perfect system.

D1+ V =
(

dI 0
0 d

)
(13)
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-1-1 1-1 Figure 2. Bond defect (the broken line indicates the bond that is
removed). Plaquettes used in the calculation are shown.

wheredI is the 2×2 block ofD1 associated withα00 andβ00 andd is the(N−2)×(N−2)
block of D1 associated with the other plaquettes.V decouplesα00 andβ00 from the rest of
the frustrated system. Now ifM0 is the number of ground-state configurations in the fully
frustrated system andM is the quantity for the defective system, we have from equations (2)
and (4),M2

0 = |D1| andM2 = |d|. It follows immediately that

M2 = M
2
0|I + D−1

1 V|
|dI | . (14)

Now there are only non-zero matrix elements between|α〉 and |β〉 states so that it is
convenient to define

〈αi+m,j+n|D−1
1 |βi,j 〉 = igmn (15a)

〈βi+m,j+n|V|αi,j 〉 = ivmn (15b)

〈αi+m,j+n|dI |βi,j 〉 = id ′mn. (15c)

Each determinant in equation (14) becomes the product of identical determinants and we
can write

M = M0|I − gv |
|d′| (16)

where it is understood that it is the magnitude of the determinants that we take. The change
in entropy from the fully frustrated value is given by

1S/kB = ln |I − gv | − ln |d′|. (17)

An identical formalism will be employed for the more complex defect structures studied
later in this paper. In general, the defect cluster comprisesn frustrated plaquettes;dI andd
aren×n and(N−n)×(N−n) blocks respectively.D−1

1 andV arenv×nv blocks, wherenv
is the sum ofn and the number of plaquette states that are coupled to the defect cluster by
elements ofD1. (I−gv) comprises two diagonal blocks of the order ofnv/2, one associated
with theα states and the other with theβ states. It is to be understood that the determinant
in equation (16) is of just one of these blocks. Similarlyd′ also comprises two blocks of
the order ofnv/2, but in this case they are off-diagonal blocks. Again the determinant of
just one block is understood in equation (16).g andv also comprise off-diagonal blocks.

For the bond defect (nv = 8; see figure 2), the decoupling matrixv is given by

v =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . (18)

Rows and columns of the full 8× 8 matrix are ordered:|α00〉, |α11〉, |α1−1〉, |α20〉, |β00〉,
|β−11〉, |β−1−1〉, |β−20〉. Equation (18) represents the lower left off-diagonal block.
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-1-1 1-1 Figure 3. Site defect (bonds connected to heavy dot are removed).
Plaquettes shown are the ones involved in the calculation.

The elements ofg are found in the usual way

gmn = 1

2

∫ π/2

−π/2

dky
π

∫ π

−π

dky
2π

exp[ikx(m− 1)] cosnky
i sinkx + cosky

. (19)

Equation (19) relates to the upper right off-diagonal block (see equation (15a)). There are
a number of symmetry relations and sum rules; these are given in appendix C together
with a selection of values of matrix elements. The determinants in equation (16) are easily
evaluated.|I − gv | is just 1

4 and the denominator is unity (there is no entropy associated
with the isolated defect), so thatM = M0/4 and, for a low concentration,c, of such
defects, the entropy shift is given by

1S/kB = −2c ln 4. (20)

The factor of 2 appears because we evaluate the entropy per site andc is the fraction of
removed bonds (N sites and 2N bonds). The result can also be easily obtained from a
symmetry argument. If we focus on, say, theα00 plaquette in figure 2 then, in the perfect
lattice, 1

4 of the ground-state configurations have the wrong bond on the negative bond
betweenα00 and β00. When the defect is present, this bond is removed and so those
configurations have lower energy (the new ground states). This is the origin of the factor
of 1

4. Although the result is a trivial one, it does provide a simple illustration of the method
prior to considering more complex situations.

3.3. Site defect

The site defect involves the removal of all bonds connected to a particular site. The group
of plaquettes that we need to consider is shown in figure 3. The unfrustrated region now
is that associated withα00, α11, β00, β−11 (n is now 4). This situation can be treated in a
similar way to the bond defect. Again a decoupling term,V, is defined. Nownv is 12 and
v (from equation (15b)) is the following 6× 6 block

v =


0 0 1 1 0 0
0 0 0 0 −1 1
1 0 0 0 0 0
1 0 0 0 0 0
0 −1 0 0 0 0
0 1 0 0 0 0

 . (21)

The basis states are ordered|α00〉, |α11〉, |α1−1〉, |α20〉, |α−11〉, |α02〉, |β00〉, |β−11〉, |β−1−1〉,
|β−20〉, |β11〉, |β02〉.
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Figure 4. Site defect; the alternative one to the one shown in
figure 3.

Again we use equation (16). There is considerable simplification if we use the sum rule
in appendix C. The determinant|I − gv | easily reduces to 2(g11g1−1− g00g20), and|d′| is
2, so thatM =M0/8 and, for a low concentration,c, of site defects, the entropy shift is
given by

1S/kB = −c ln 8. (22)

Although one could have anticipated the fact that the entropy shift due to the bond defect
can be expressed in terms of a simple integer, the similar simplicity for the site defect is
perhaps a little surprising; certainly it does not happen for the site defect in the triangular
antiferromagnet (see section 4). It is interesting therefore to explore the situation when
more than one defect is present.

3.4. Site defect pairs (non-overlapping)

We consider the effect on the entropy due to the presence of a pair ofnon-overlapping
site defects. The first defect is based on plaquettesα00, β00, α11, β−11 as in figure 3. For
the second defect there are two distinct cases: either it is based onαM+0,N+0, βM+0,N+0,
αM+1,N+1, βM−1,N+1 (i.e. as in figure 3 but shifted byM,N ), or it is based onβM+0,N+0,
αM+2,N+0, βM+1,N+1, αM+1,N+1 (as in figure 4 with a shift byM,N ). We shall call these
cases (i) and (ii) respectively. To make the results clearer, it is convenient to introduce
indices (µ, ν) to represent the separation of the site defects;(M,N) are unit cell separations.
The relations between the two are: for case (i),µ = M, ν = N ; for case (ii),µ = M + 1,
ν = N .

3.4.1. Case (i) (µ + ν even). Much of the simplification that arose in the analysis of the
single defect case stemmed from the use of the sum rule and the symmetry relations.
A similar simplification occurs here as well. For compactness of notation, we define
g±mn = g±M+m,±N+n. There is a|d′| associated with each defect independently which
immediately gives a factor of 4 in the denominator of equation (16). Nownv = 24 and the
decoupling matrix,v, is of size 12×12 (two 6×6 blocks, one associated with each defect).
Using the sum rule in appendix C, the 12× 12 determinant|I − gv | is easily reduced to a
smaller one so that we can write

M
M0
=

∣∣∣∣∣∣∣
g00 g1−1 g−00 g−1−1
g11 g20 g−11 g−20
g+00 g+1−1 g00 g1−1

g+11 g+20 g11 g20

∣∣∣∣∣∣∣ . (23)
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The upper-left and lower-right 2× 2 blocks are the single defect contributions; the off-
diagonal blocks represent pair effects. The symmetry relations in appendix C can be used
to show that

g−00 = ±g+20 (24a)

g−20 = ±g+00 (24b)

g−1±1 = ∓g+1∓1 (24c)

where the± signs prefixing theg refer toM,N odd (upper sign) or even (lower). We can
pull out the single defect contributions as a prefactor and write

M
M0
= 1

82

∣∣∣∣∣∣∣
1 0 ∓2(g+1−1+ g+20) ±2(g+00+ g+11)

0 1 ∓2(g+1−1− g+20) ±2(g+00− g+11)

2(−g+00+ g+11) 2(−g+1−1+ g+20) 1 0
2(g+00+ g+11) 2(g+1−1+ g+20) 0 1

∣∣∣∣∣∣∣ . (25)

Evaluating the determinant yields

M
M0
= 1

82
[1∓ 8{(g+00)

2+ (g+11)
2+ (g+1−1)

2+ (g+20)
2} + 64{g+00g

+
20− g+11g

+
1−1}2]. (26)

The prefactor 8−2 is the contribution from the two defects independently (see equation (22)),
and the term in the square brackets gives the pair effect. The asymptotic behaviour of the
functions in equation (26) can be found for large impurity separation (see appendix C
for the elements ofg). The following configurations are considered:(µ = R, ν � µ);
(µ � ν, ν = R); (µ = ν = R). In each case, equation (26) yields to the leading term in
R−1

M
M0
= 1

82

[
1+ A(−1)R

16

π2R2

]
(27)

whereA = 1 for the first two defect configurations andA = 1
2 if they lie along a diagonal.

3.4.2. Case (ii) (µ + ν odd). We follow the procedure described for the previous case.
The expression equivalent to equation (23) is

M
M0
=

∣∣∣∣∣∣∣
g00 g1−1 g−00 g−−1−1
g11 g20 g−11 g−00
g+20 g+3−1 g20 g1−1

g+11 g+20 g11 g00

∣∣∣∣∣∣∣ . (28)

Again we employ similar symmetry relations, and obtain as the expression that is the
counterpart of equation (26)

M
M0
= 1

82
[1± 4{2g+20(g

+
11+ g+1−1− g+31− g+3−1)+ (g+11+ g+3−1)(g

+
1−1+ g+31)}

+64{(g+20)
2− g+11g

+
3−1}{(g+20)

2− g+1−1g
+
31}]. (29)

Referring to the elements ofg listed in appendix C, we find that the O(R−2) corrections to
the independent defect behaviour are zero in this case. The leading corrections are O(R−4).
The final term in equation (29) is clearly of this order. There is also a contribution from the
other term in equation (29) for which it was necessary to expand elements ofg to O(R−2).
The result for(µ = R, ν � µ) and(µ� ν, ν = R) is

M
M0
= 1

82

[
1− 16(Bπ2− 4)

π4R4

]
(30)
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where, for theν � µ regime,B = 5 if µ is even andν is odd, andB = 1 if µ is odd and
ν is even. Forµ � ν, the values ofB are reversed in accordance with the symmetry of
the square lattice. The diagonal configuration is always case (i).

3.4.3. Comments.The entropy shift for largeR can then be written as

1S/kB = −2 ln 8+ 16A(−1)R/(πR)2 (31a)

if µ+ ν is even and, if it is odd, as

1S/kB = −2 ln 8− 16(Bπ2− 4)/(πR)4. (31b)

It is interesting to compare the behaviour of the pair corrections with the correlation functions
that have been calculated [16–18] for this model. Clearly the two are related, albeit rather
indirectly. It should be noted that the pair corrections in this entropy calculation, unlike the
correlation functions, do not depend on the particular gauge used. The correlation functions
can oscillate with a period of 2 or 4 with a distance [18] depending on the gauge (Villain
or zig-zag domino). Diagonal correlations oscillate between zero and a finite value (which
can be positive or negative in the gauge that displays a period of 4); the corresponding pair
entropy corrections in equation (27) oscillate between positive and negative values with a
period of 2.

Now specifically consider defects lying along the vertical(µ = 0) or horizontal axes
(ν = 0) for which R is even (case (i)) or odd (case (ii)). Pair corrections to the entropy
now oscillate with a period of 2 between O(R−2) and O(R−4) behaviour, whereas the
correlations [18] vary between two non-zero values while maintaining theR−1/2 dependence
that characterizes the correlation functions of the fully frustrated systems.

It is worth noting that the asymptotic elements ofg listed in appendix C depend on
the particular gauge used and are not expected to exhibit the symmetry of the lattice. The
entropy changes, of course, are identical for symmetrically equivalent defect configurations.

4. Triangular lattice

4.1. Fully frustrated antiferromagnet

The fully frustrated triangular lattice can be realized by placing negative antiferromagnetic
bonds everywhere. The matrixD for the triangular lattice [9] has diagonal blocks linking
six nodes per site and other elements analogous to those for the zig-zag domino model.
Again we can develop the discussion in terms of eigenstates associated with the frustrated
plaquettes. Equations (2) and (4) still apply apart from a prefactor of2

3:

ε = ± 2
3X exp(−2rJ/kBT ). (32)

The relation between the frustrated plaquette and the node basis is given in appendix B. So
that equations (12)–(14) are still applicable, we will writeD1 as in equation (7) but withλ
now defined as

λ = 1
3[1− tanh(J/kBT )] (33)

The labelling for the frustrated plaquette basis is shown in figure 5. In the diagrams
we represent the triangular lattice as the topologically equivalent square lattice with bonds
across one diagonal. The matrix elements ofD1 are all given by

〈α|D1|β〉 = i (34)
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Figure 5. Section of triangular antiferromagnet. All
bonds are negative. Plaquette labelling is shown.

so that

〈αm,n|D1|βm,n′ 〉 = i[δ(m−m′)δ(n− n′)+ δ(m−m′ + 1)(δ(n− n′)
+δ(m−m′)δ(n− n′ − 1)]. (35)

The Fourier transformation then yields

〈αk|D1|βk′ 〉 = iδ(k − k′)[1+ exp(ikx)+ exp(−iky)] (36)

and

X2
k = 3+ 2[coskx + cosky + cos(kx + ky)]. (37)

The entropy is then

S/kB = 1

2

∫ π

0

dkx
π

∫ π

0

dky
π

ln[3+ 2(coskx + cosky + cos(kx + ky))] (38)

which can be shown to agree with the result of Wannier [7].

4.2. Bond defect

The procedure closely follows that of section 2. We defineg, v, andd′ as in equation (15)
and then employ equations (16) and (17) to find the entropy changes. The notation for the
bond defect is shown in figure 6 and, with basis states(nv = 6) ordered|α00〉, |α10〉, |α11〉,
|β10〉, |β00〉, |β0−1〉, the decoupling matrix is

v =
( 0 1 1

1 0 0
1 0 0

)
(39)

and

gmn =
∫ π

−π

dkx
2π

∫ π

−π

dky
2π

cos[mkx + nky ] + cos[(m+ 1)kx + nky ] + cos[mkx + (n− 1)ky ]

3+ 2[coskx + cosky + cos(kx + ky)] .

(40)

The symmetry relation and sum rule for the triangular antiferromagnet are given in
appendix D together with a selection of values of matrix elements. The determinants in
equation (16) are easily evaluated.|I − gv | is just 1

3 and the denominator is unity (there
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Figure 6. Bond defect. The broken line indicates
the bond that is removed. Plaquettes relevant to the
calculation are shown.

Figure 7. Site defect. Bonds connected to the heavy
dot are removed. Relevant plaquettes are shown.

is no entropy associated with the isolated defect), so thatM = M0/3 and, for a low
concentration,c, of such defects, the entropy shift is given by

1S/kB = −3c ln 3. (41)

The prefactor of 3 appears because there are three bonds per site. As in the case of the
square lattice, this result could be anticipated by symmetry arguments.

4.3. Site defect

The notation for the site defect in the triangular antiferromagnet is shown in figure 7. The
decoupling matrix(nv = 12) is

v =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (42)

with basis states ordered|α01〉, |α11〉, |α00〉, |α10〉, |α12〉, |α−10〉, |β10〉, |β11〉, |β00〉, |β01〉,
|β21〉, |β0−1〉.

The sum rule and symmetry relations (see appendix D) can again be used to give
considerable simplification. The determinant|I−gv | can be reduced to 2(g00−g−11)

2(2g00+
g−11) and |d′| is 2, so that, for a low concentration,c, of site defects, the entropy shift is
given by

1S/kB = c ln

(1

3
+
√

3

2π

)2(
2

3
−
√

3

2π

) (43)

or

1S/kB = −c1.9309. (44)

This is the first direct derivation of this result that we are aware of. Farachet al [4] used
an alternative approach and obtained the expression

1S/kB = c[ln 2− lnP(0)] (45)
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where P(h) is the distribution function for local fields in a triangular antiferromagnet.
Choy and Sherrington [19] obtained a numerical value forP(0) which when substituted
into equation (45) reproduced the result in equations (43), (44). There appears to be an
error in the numerical result quoted by Farachet al [4].

4.4. Site defect pairs (non-overlapping)

For a pair of non-overlapping site defects we can proceed in a fashion similar to that used
for the square lattice in section 2.4. A similar notation,g±mn = g±M+m,±N+n, is used. Again
we are dealing with a 12× 12 determinant(nv = 24); in this case it can be reduced by
using the sum rules to a simpler form.

M
M0
=

∣∣∣∣∣∣∣∣∣∣∣

g−11 g−10 g01 g−−11 g−−10 g−01
g01 g00 g11 g−01 g−00 g−11
g−10 g−1−1 g00 g−−10 g−−1−1 g−00
g+−11 g+−10 g+01 g−11 g−10 g01

g+01 g+00 g+11 g01 g00 g11

g+−10 g+−1−1 g+00 g−10 g−1−1 g00

∣∣∣∣∣∣∣∣∣∣∣
. (46)

The diagonal 3×3 blocks are the contributions from isolated defects and, if the off-diagonal
blocks were neglected and symmetry relations(g−10 = g01 = g00; g11 = g−1−1 = g−11)

were used, we would retrieve equation (43). There does not appear to be any further
simplification in the general case, but we will evaluate the asymptotic behaviour for the
case(M = R,N = R). For this case the lower left-hand 3×3 block in equation (46) is the
transpose of the upper right-hand block. Furthermore, from the symmetry of the six-fold
symmetry of the triangular lattice, the determinant in equation (46) has the same value for
(M,N) = (R,R); (−R,−R); (R, 0); (−R, 0); (0, R); (0,−R). This can be confirmed via
the symmetry relations obeyed by theg’s that are given in appendix D.

Using the asymptotic forms for the set ofg’s listed in appendix D, equation (46) can
be evaluated analytically to leading order inR−1

M
M0
=
(1

3
+
√

3

2π

)2(
2

3
−
√

3

2π

)2 [
1+ 9σ

2π2ξ2R2

]
(47)

where

ξ = 1

3
+
√

3

2π
(48)

andσ is 1 if R = 3× integer and− 1
2 otherwise.

As with the square lattice, it is interesting to make comparisons with the correlation
functions. Both the pair corrections to the entropy and the correlations [20] exhibit
oscillations with a period of 3. Furthermore, the numerical factor appearing in the correlation
functions shows a sublattice dependence [20] that exactly matches that shown here byσ .

The entropy shift for largeR can be written as

1S/kB = 2 ln

(1

3
+
√

3

2π

)2(
2

3
−
√

3

2π

)+ 9σ/[2(πξR)2]. (49)
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5. Conclusions

We have evaluated the entropy shift due to some defect configurations in two fully frustrated
systems. For the bond defects, the results are simple and could be obtained equally by
symmetry arguments. However, they are useful for illustrating the method. The more
physically interesting site defects give non-trivial results. Although the site defect in the
square lattice does produce a simple expression (equation (22)), we are unable to reproduce it
by the kind of symmetry arguments applicable for bond defects. For a finite concentration,c,
of defects, the single defect results, of course, also provide the leading term in an expansion
in powers ofc.

Pair effects are also considered for site defects. In both systems, pair corrections are
of the order ofR−2 (or R−4 for certain values ofR in the square lattice), whereR is
the separation of the members of the pair. Representative configurations are examined.
We could, in principle, develop this study to obtain O(c2) terms. This would require a
numerical evaluation and a summation over relative positions of defects. It is likely that
the summation would be fairly rapidly convergent.

A more profitable objective would be the exact evaluation of the ground-state entropy
over a wide range ofc (from zero to the percolation threshold) and averaging the entropy
over a large sample of defect configurations. This approach has already been employed
[10] for the ±J model. The methods [10, 12–14] that allow an exact calculation of the
ground-state properties provide an important complement to the Monte Carlo simulations
which are particularly difficult to apply to frustrated systems in the low-temperature limit.
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Appendix A
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e
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d
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f

βα

Figure A1. Node labelling for square lattice. Figure A2. Nodes required to define plaquette states
|α〉 and |β〉 for zig-zag domino model.

The original node basis for the square lattice (see [10]) is defined in figure A1. For the
zig-zag domino model the two types of frustrated plaquette are shown in figure A2. The
relation between the node and the frustrated plaquette basis is

|α = 1√
8

[|a, 3〉 + |a, 1〉 − |d, 4〉 + |d, 1〉 − |e, 2〉 − |e, 4〉 + |b, 3〉 + |b, 2〉] (A1)

|β = 1√
8

[|b, 3〉 + |b, 1〉 + |e, 4〉 − |e, 1〉 + |f, 2〉 + |f, 4〉 + |c, 3〉 + |c, 2〉]. (A2)
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Appendix B
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3

a b

dc

β

α

Figure B1. Node labelling for triangular lattice. Figure B2. A representation of the nodes required
to define plaquette states|α〉 and |β〉 for triangular
antiferromagnet.

The original node basis for the triangular lattice (see [9]) is defined in figure B1. For the
triangular antiferromagnet the two types of frustrated plaquette are shown in figure B2. The
relation between the node and the frustrated plaquette basis is

|α = 1√
6

[|a, 1〉 + |a, 2〉 + |d, 5〉 + |d, 6〉 − |b, 3〉 − |b, 4〉] (B1)

|β = 1√
6

[|a, 2〉 + |a, 3〉 − |d, 4〉 − |d, 5〉 − |c, 1〉 + |c, 6〉]. (B2)

Appendix C

The following sum rule and symmetry relations for the elements ofg for the zig-zag domino
model exist

gm,n = gm,−n (C1)

gm,n = ±g2−m,n. (C2)

The± signs in equation (C2) refer tom andn odd/even.

gm,n = (−1)(m+n+2)/2gn+1,m−1 (C3)

−gm,n + gm+1,n−1+ gm+1,n+1+ gm+2,n = δm0δn0. (C4)

Selected elements ofg (see equation (19)) are evaluated as follows

m n gmn
0 0 − 1

4

1 ±1 1
4

2 0 1
4

−1 ±1 1/π − 1
4

0 ±2 1/π − 1
4.

Asymptotic expressions for the elements ofg are required to progress from equation (26) to
equation (27) and from equation (29) to equation (30). A single integration in equation (19)
followed by an integration by parts leads to the following expressions taken to O(R−2). For
M � N :

g+mn =
(−1)(N+n)/2

π(M +m− 1)
(C5)
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if N + n is even, and

g+mn =
(−1)(N+n)/2(N + n)
π(M +m− 1)2

(C6)

if N + n is odd.
ForN � M:

g+mn =
(−1)(N+n)/2

π(N + n) (C7)

if M +m is odd, and

g+mn =
(M +m− 1)(−1)(N+n)/2

π(N + n)2 (C8)

if N + n is even.
ForM = N = R:

g+mn =
(−1)(R+n)/2

2πR
(C9)

if M +m andN + n are even, and

g+mn =
(−1)(R+n−1)/2

2πR
(C10)

if M +m andN + n are odd. Otherwise this quantity is zero.
The sum rule, equation (C3), is satisfied to O(R−2) for theM � N andN � M cases,

and to O(R−1) for M = N .

Appendix D

The following sum rule and symmetry relations for the elements ofg for the triangular
antiferromagnet exist

gm,n = g−n,−m (D1)

gm,n + gm−1,n + gm,n+1 = δm0δn0 (D2)

gm,m+p = gm,1−p. (D3)

If values ofgm,−m are known for integer values ofm, all other elements can be obtained
from equations (D1) and (D2). Thegm,−m that are required for this paper are evaluated
from equation (39) and are listed below

m n gmn
0 0 1

3−1 1 −√3/2π
1 −1 −√3/π + 2

3.

Asymptotic expressions for the elements ofg required in the derivation of equation (46)
can be obtained in the manner used in appendix C. ForM = N = R and to the leading
order inR−1, it can be shown that

g+mn = −
(−1)m−n

πR
sin[π(2R +m+ n)/3]. (D4)

Equation (D2) is satisfied to O(R−1).
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